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Abstract: This paper describes the theory behind 

isentropic acoustic topology optimization and 

provides several examples to illustrate its use. For 

example, the technique can convert acoustic modes in 

a tube; filter sound spatially by frequency content; and 

help in the design of loudspeaker geometries such as 

phase plugs and waveguides. Details such as density 

and projection filters to facilitate binary designs suited 

for actual production are also discussed, as is the 

implementation in COMSOL Multiphysics. 
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Introduction 

 
Topology optimization is a relatively new discipline 

in which one or more domains are assigned to be 

design domains; in these domains, one or more 

material properties are changed via the optimization 

process, in order to meet certain desired targets. 

 

The techniques has been explored within different 

physics and applications; arguably most within the 

framework of structural mechanics around which 

most of the available literature revolves, see e.g. 

[1,2]. The physics explored in the present work, 

however, is acoustics, for which much less literature 

exists [3,4]. In the present work, the theory behind 

the methodology is described and several examples 

are given to illustrate its use. 

 

In the topology optimization procedure, one or more 

design domains is defined in which a single design 

variable can vary throughout an optimization 

process. Certain objectives and constraints are 

defined mathematically for which an optimized 

design is sought. The design variable controls one or 

more material parameters. In the case of acoustics, 

two material parameters are controlled; the density of 

the fluid and its bulk modulus. 

The design variable can vary continuously in a range 

of 0 to 1, but a binary design is desired, for which the 

design variable is either 0 or 1. This is typically 

achieved by having certain material interpolation 

functions describing the relationship between the 

design variable and the material parameters, often 

accompanied by incorporating certain projection 

filters further forcing binary designs: 

A binary design is typically visualized with white and 

black sections in the design domain; for acoustics, 

white indicates a design variable of 0, which in turn 

describes a fluid with air properties. Black sections 

indicate a design variable of 1 and represent a heavy 

and stiff fluid; its boundaries are typically assumed 

replaceable with a hard wall boundary condition. 

However, for certain cases, a design with this 

boundary condition will not give the same result as 

that indicated by the initial optimization routine, so 

one should always test the optimized design with the 

hard wall approach, as this is how the end design will 

ultimately be constructed. This test has been carried 

out for the design examples shown in this paper to 

ensure that the designs work as intended. 

 

 

Theory  
 

In the design domain(s) a design variable 𝜉 is defined 

via [1]  

 

0 < 𝜉(𝐱) ≤ 1      ∀ 𝐱 ∈ Ωd 

 

where 𝐱 denotes the coordinate space and Ωd is the 

design domain. 

 

In order to avoid numerical instabilities, such as mesh 

dependency and checkerboarding [1], a density filter 

can be applied. This can be implemented via a 

Helmholtz-type partial differential equation [5] as  

 

−r2∇2𝜉 + 𝜉 = 𝜉,
∂𝜉

∂n
= 0 
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with a resulting filtered design variable 𝜉. The filter 

radius r is adjusted to fit with e.g. two mesh element 

side lengths, depending on the problem at hand. 

 

As a means of forcing binary (black and white 

exclusively) designs without grey areas, it can be 

advantageous to apply a so-called projection filter, 

for which the design variable, or the density filter 

variable if one such filter is applied, is projected onto 

a new design variable axis in order to ensure that 

grey designs go towards either black or white. This is 

mathematically defined as [6] 

 

𝜉̅ = 𝜉̅ (𝜉(𝜉)) =
tanh(𝛽𝜂) + tanh(𝛽(𝜉 − 𝜂))

tanh(𝛽𝜂) + tanh(𝛽(1 − 𝜂))
 

 

for the projection filtered (and here assuming also 

density filtered) design variable 𝜉.̅ The parameters 𝛽 

and 𝜂 determine the projection filter characteristics. 

 

A continuation scheme was applied for some of the 

examples shown later for which the 𝛽-value was 

ramped up in steps during the optimization process 

[6]. A continuation scheme for the density filter 

radius has also been suggested [7] but was not found 

necessary for the examples shown in this work. Also, 

sensitivity filtering [8] was not considered here. 

 

It is assumed that the acoustic process is isentropic, 

i.e. no losses are included the optimization, at least in 

the design domain. In this case, the complex 

harmonic pressure p is found via the Helmholtz 

equation based on the projected design variable as 

 

∇ ∙ (
1

ρ(𝜉̅)
∇p) +

ω2

K(𝜉)̅
p = 0. 

 

with the density ρ, the bulk modules K, and an 

angular frequency of ω. The material values for the 

acoustic medium in the design domain are modified 

according to the value of the design variable using an 

interpolation scheme such as the Solid Isotropic 

Material with Penalization (SIMP) scheme. Here, 

intermediate values of the design variable are 

penalized so that they seek towards being closer to 0 

or closer to 1 as the optimization is carried out, in 

order to have less grey in the design domain. A SIMP 

scheme is mathematically described as [1] 

 

ρ(𝜉̅) = ρ0 + 𝜉̅P(ρs − ρ0) 

 

where ρ(𝜉̅) is the density as a function of the design 

variable, ρ0 is the density for air, ρ𝑠 is a density value 

for a very dense fluid, and P is a penalization 

constant; the higher the value, the higher the 

penalization. 

 

For a (possible density and projection filtered) design 

variable value of 0, the density ρ(𝜉)̅ equals the 

standard ρ0 = 1.2 kg/m3 for air, whereas a design 

variable of 1 relates to a very dense fluid; e.g. with ρs 

set to 1,000 kg/m3. 

 

Intermediate values are penalized since they have 

very similar resulting material values as a design 

variable value of 0 (=air) yet take up a substantial 

amount of the available integrated design variable, 

and so in order to comply with the volume ratio 

constraint the solver seeks away from such 

intermediate values. 

An equivalent scheme with appropriate values is 

defined for the bulk modulus K of the fluid in the 

design domain, ensuring a very stiff medium for a 

design variable of value 1 (=solid).  

For certain problems, alternative interpolation 

schemes are advantageous, such as e.g. the Rational 

Approximation of Material Properties (RAMP) 

scheme [9], which was used for several of the 

examples here. 

 

A critical part of the optimization process is defining 

proper objective functions for which a solution is 

sought. This will often be an iterative process, as the 

resulting design often reveals inadequacies of the 

objection function/functions, and so it/they must be 

refined or reformulated. Oftentimes an extra 

objective function is needed with a weight to scale it 

to the original objective function, to avoid trivial 

solutions, such as closing off an input entirely in 

order to minimize the output. A mathematical 

formulation of the acoustic optimization problem can 

typically be written as a minimization problem as 

 

min:
𝜉̅

Φ (p (𝜉(̅𝜉)) , 𝜉) 

subject to: ci (p (𝜉(̅𝜉)) , 𝜉)̅ ≤ 0, 𝑖 ∈ {1,2, … } 

 

where Φ is an objective function, and p is the 

complex acoustic pressure in the design domain. 

Several constraints ci limit the design space. A typical 

constraint is a volume fraction constraint, which 

limits how much of the design domain can be  

assigned a design variable of 1, indicating a structural 

domain. Such a constraint is sometimes included, 

even if not physically needed, for improved 

numerical convergence, but oftentimes one is of 

course limited in how much of the domain can be 

taken up by a rigid structure. The volume fraction 

constraint is defined via 



 

 

 

∫ 𝜉̅
Ωd

dΩd

Ω𝑚𝑎𝑥

− 1 ≤ 0 

 

where a predefined maximum allowable part of the 

design domain, denoted Ωmax, can be assigned a 

design variable value of 1. 

 

Sensitivities are found via an adjoint method [10], 

and the Method of Moving Asymptotes (MMA) [11] 

is used for solving the optimization problem. 

 

 

Implementation in COMSOL Multiphysics1 
 

Several parameter values, e.g. for the interpolation 

extremes, are input under Parameters. 

 

The material interpolations for density and bulk 

modulus, respectively, are input under Variables as 

functions of the design variables. These function 

variables are used as input in a separate Pressure 

Acoustics node for the design domains only. 

 

A Topology Optimization node is added under 

Definitions, with a Projection applied using a 

Projection Slope value initially defined under 

Parameters, but its value is often controlled during 

the Study. 

 

An Optimization node is added from the 

Mathematics selection, and typically one or more 

Global Objectives are added. Also, the allowed 

volume fraction is controlled via a Global Inequality 

Constraint. 

 

The MMA solver method is chosen, with the 

Adjoint gradient method activated. 

 

 

Examples 

 

The following examples have been chosen to show 

the applicability of the acoustic topology 

optimization scheme described in the above, with a 

special focus on cases for which non-intuitive designs 

emerge. 

 

Criss-cross Splitter, 2D 

 

The Criss-cross Splitter can have sound travel from 

one input crossing a domain to an output, whereas for 

a second input sound can travel to another input 

                                                           
1 This section assumes implementation in v5.4. 

crossing the design domain along the other diagonal. 

The geometry is shown in Figure 1; the side lengths 

of the design domain are all 1 meter. 

 

 
Figure 1: The Criss-cross Splitter is intended to make one 

frequency input cross the design domain shown in grey 

from Input 1 to Output 2, while another frequency input 

crosses from Input 2 to Output 1. 

Plane wave boundary conditions are applied at all 

inputs and outputs, with a plane wave pressure 

amplitude with differing frequencies at each input. 

 

The objective function can be written as a max-min 

problem as 

max:
𝜉̅

min
fi,j

Iout,i(𝜉̅, fi,j)

Iin,j(𝜉,̅ fi,j)
 

 

to optimize the intensity transfer Iout/Iin for each of 

the two transfer paths at their respective assigned 

frequency, i.e. fi,j = f1,2 and fi,j = f2,1, respectively. 

 

The resulting topology optimized design is shown in 

Figure 2 for f2,1 = 900 Hz related to the Input2-to-

Output1 transfer, and f1,2 = 1,260 Hz related to the 

Input1-to-Output2 transfer. 

 

 
Figure 2: The topology optimized design for f2,1=900 Hz 

(Input 2-to-Output1) and f1,2=1,260 Hz (Input1-to-

Output2). 

The resulting acoustic pressure is shown in Figure 3 

with arrows indicating the acoustic intensity. The 

‘criss-cross’ nature of the setup is clearly seen. The 

superposition principle dictates that this functionality 

be present when both inputs are active 

simultaneously. 



 

 

 

 
Figure 3: The acoustic pressure topology optimized design 

for a frequencies f2,1=900 Hz (Input2-to-Output1) shown on 

the left and f1,2=1,260 Hz (Input1-to-Output2) on the right. 

Arrows indicate acoustic intensity. 

 

Acoustic Demultiplexer, 2D 

 

The Acoustic Demultiplexer can split a single input 

signal to three outputs depending on the input 

frequency, as a sort of ‘acoustic cross-over filter’ in 

contrast to a normal electrical cross-over filter found 

in most loudspeakers. It is assumed that only three 

discrete frequencies can occur at the input, but it is 

also possible to formulate band-pass regions for each 

output. The geometry is shown in Figure 4 with the 

design domain indicated with grey color. Plane wave 

boundary conditions are applied at the input and all 

outputs; for the input a plane wave amplitude is also 

applied. 

 
Figure 4: The Acoustic Demultiplexer with a design 

domain shown in grey is intended to split a single input into 

three outputs depending on the input frequency. 

The objective function can be written as a max-min 

problem as  

max
𝜉̅

: min
fi

Iout,i(𝜉̅, fi) 

 

essentially seeking to even out differences between 

the three output intensities Iout,i at their respective 

assigned frequencies. 

For the frequencies f1 = 800 Hz, f2 = 960 Hz, and 

f3 = 1,120 Hz, and a design domain of 1 m2, the 

resulting topology optimized design is shown in 

Figure 5. 

 

 
Figure 5: The optimized design for the given frequencies 

and a 1 m2 design domain. 

The black domains are replaced with hard wall 

boundary conditions on their edges, and the resulting 

pressure field is shown in Figure 6, where the arrows 

indicate the acoustic intensity. It is clearly seen that 

the Acoustic Demultiplexer with one fixed design can 

split the input frequency content into individual 

outputs. 

 

 
Figure 6: The resulting pressure distribution in the Acoustic 

Demultiplexer for three different frequencies at the input: 

(a) 800 Hz, (b) 960 Hz, and (c) 1,120 Hz. The side lengths 

of the design domain are each 1 m. Arrows indicate 

acoustic intensity. 



 

 

 

Acoustic Mode Converter, 3D 

 

Acoustic modes in ducts are an interesting topic 

which is important for many applications. A duct has 

an infinite number of geometrically inherent modes. 

The total sound field in a duct can be described by its 

modes, but the input excitation will dictate to which 

degree modes are present, and the frequency will 

determine if a mode is propagating or evanescent. If 

the cross-section is constant, the modes will not 

change their characteristics spontaneously. However, 

with acoustic topology optimization part of the tube 

geometry can be modified, so that certain modes are 

converted into other modes. This can in certain cases 

be a remedy for undoing other effects coming from 

geometry changes such as kinks in/bends on the tube. 

In other cases, one might want to turn an evanescent 

wave into a propagating one, or vice-versa. 

 

The functionality is exemplified via a three-

dimensional case; the Acoustic Mode converter. It 

starts out as a model found in COMSOL’s 

application library2, slightly modified, and topology 

optimization added. A rectangular tube is exited at 

one end with a plane wave, and due to a kink and a 

bend in the tube the output has a multimodal behavior 

above a certain frequency, as illustrated in Figure 7. 

 

 
Figure 7: The acoustic pressure for the initial geometry, and 

the resulting sound pressure for a plane wave input at 1,180 

Hz. 

 

The plane wave would have been the only mode at all 

frequencies for the excitation in question were it not 

for the bend and the kink, but with acoustic topology 

optimization it is possible to negate the effect of the 

kink and the bend and restore the plane wave 

propagation at the output and onward.  

 

The design domain was chosen to be the corner 

geometry; the bend.  

                                                           
2 Search for “Duct with Right Angled Bend”. 

 

The objective function is expressed for a single 

frequency input as 

 

min:
𝜉̅

√aveop𝐱out
((p(𝜉̅)p∗ − aveop𝐱out

(p(𝜉̅)p∗))
2

) 

 

minimizing the acoustic pressure variance over the 

output surface with coordinates 𝐱out, pressure and 

complex conjugated pressure p and p∗, respectively, 

utilizing an average operator over the output surface 

denoted aveop𝐱out
. 

 

The acoustic pressure for the topology optimized is 

shown in Figure 8. 

 

 

Figure 8: The acoustic pressure for the topology optimized 

geometry, restoring a plane wave output despite the bend 

and the kink in the rectangular tube for a plane wave input 

at 1,180 Hz. The optimized geometry is also shown. 

 

The mode conversion has been generalized, such that 

one non-planar mode can be converted to another 

non-planar mode, be they evanescent or propagating. 

This is illustrated in Figure 9 for a (0,1)-to-(0,2) 

radial mode conversion, both modes propagating, in a 

circular cylindrical tube.  

 

 
Figure 9: A (0.1) mode on the left input of the circular 

cylindrical tube is converted to a (0.2) mode after the 

insertion of a topology optimized center piece. A quarter 

revolution of the optimized solid geometry is also shown. 



 

 

Acoustic Cloaking, 2D 

 

Topology optimization can also be used for acoustic 

cloaking as illustrated below. The example starts out 

as an application library file3, on top of which 

topology optimization is added. A plane wave input 

is scattered due to a semicircular obstruction, see 

Figure 10. With topology optimization applied to two 

inner domains and an objective in the two outer 

domains of 

 

min:
𝜉̅

∫ 𝑆𝑃𝐿𝑆𝑐𝑎𝑡𝑡𝑒𝑟𝑒𝑑
Ω

dΩ 

 

an optimized geometry can be found as seen in 

Figure 11, where the plane wave characteristics have 

somewhat been restored, thus cloaking the 

obstruction. 

 

 
Figure 10: A semicircular cutout causes a scattered sound 

pressure field for a incoming plane wave going left to right. 

 

 
Figure 11: The topology optimized geometry and the 

resulting sound field for a plane wave going left to right. 

 

Tweeter Phase Plug, 2Daxi 

 

A final example of acoustic topology optimization is 

a phase plug for a tweeter. The tweeter was built to 

be as realistic as possible, when it comes to 

geometry, material parameters and electromagnetic 

properties. An initially empty design domain was 

defined in front of the speaker, and the initial on-axis 
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frequency response was found to have a valley across 

the frequency range of interest. A flatter response 

was sought via topology optimization. The objective 

is formulated as a least-squares problem as 

 

min:
𝜉̅

 
1

n
∑ √(SPL(𝜉,̅ fi) − SPL̅̅ ̅̅ ̅(fi))

2
n

i=1

 

 

for n frequencies of interest and a desired sound 

pressure level response SPL̅̅ ̅̅ ̅.  
 

The topology optimized geometry is shown in Figure 

12 along with the resulting sound pressure. The 

optimization was carried out as a 2D axisymmetric 

case, but a quarter revolution view is shown in the 

figure. The rectangular design domain is also shown. 

 

 
Figure 12: The resulting topology optimized phase plug is 

shown in black along with a zoom (right-bottom corner) of 

the phase plug cross-section, and with the resulting sound 

pressure inside and outside the tweeter at 16 kHz. 

 

The initial and the optimized on-axis sound pressure 

levels are shown in Figure 13, where it is seen that 

the sound pressure level has been flattened across the 

frequency range of interest after the optimization. 

 

 
Figure 13: On-axis pressure from the  tweeter in linear 

frequency scale, before (blue) and after the optimization 

(green) procedure having creating the phase plug geometry. 



 

 

Discussion 

 

For each optimization setup there always is an initial 

design, i.e. a chosen design variable value in the 

design, for example 0.5 throughout the domain. The 

final design is typically sensitive to this choice, but 

for the shown examples the optimization scheme was 

quite robust, so that the initial design would not 

significantly change the optimized geometry. 

 

Filtering was applied on a case-by-case basis. The 

user must experiment with this for his or her 

application in order to get confident with the effect of 

filtering. 

 

The volume constraint was applied for all cases, and 

different values were tried, before settling on a value 

suited for the example in question. As mentioned in 

the Theory chapter, even if there are no specific 

volume constraints for the physical setup, it is often 

advantageous to include one such constraint for the 

sake of the numerical solution process. 

 

The robustness of a topology optimized design can be 

an issue; if the acoustic performance is highly 

sensitive to manufacturing tolerances, the design is 

not robust, and so additional measures must be 

introduced to the optimization process. This topic is 

beyond the scope of this work, but robustness was 

considered for the test cases. 

 

 

Conclusion 
 

The current paper illustrates how COMSOL 

Multiphysics can be used for doing topology 

optimization for acoustics applications. A design 

domain is defined for which a design variable is 

continuously modified in the optimization process to 

describe the evolving design, but a binary design is 

sought in the optimization process. As the design 

variable is related to the density and the bulk 

modulus of the fluid medium, the end design is 

divided into sections with air properties, and sections 

that are given hard wall conditions on their 

boundaries. 

 

Several examples have been provided to show what 

can be achieved with acoustic topology optimization. 

It is seen that topology optimization can provide non-

intuitive solutions, which would not have been found 

via a user-driven trial-and-error process. Hence, the 

method can serve as inspiration to new design paths, 

and in certain cases it can directly lead to an end 

product design, if manufacturing constraints have 

been properly included. There is great potential for 

this method as it evolves, and it is likely to become a 

powerful tool in any future engineer’s toolbox. 
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