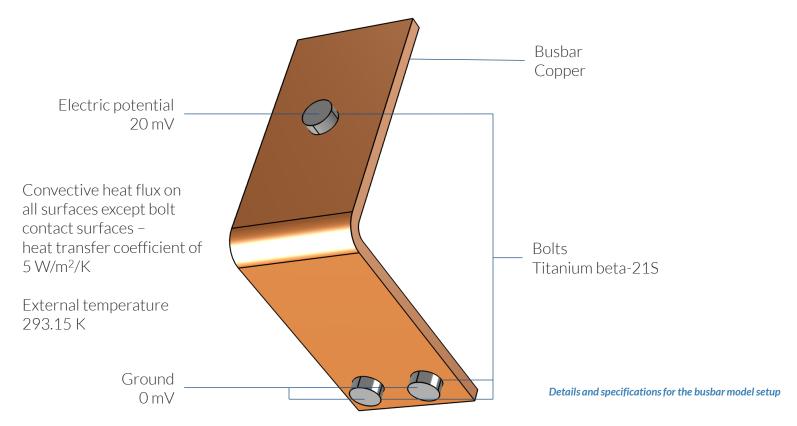
SOLUTION

Modeling Exercise

Define the physics for a model of a busbar using the manual approach with predefined couplings

Introduction

- This model exercise demonstrates the concept of multiphysics modeling in COMSOL Multiphysics®
- Define the physics for the model using the manual approach with predefined couplings
 - Run a single-physics simulation for the Electric Currents interface, followed by a multiphysics simulation including the Heat Transfer in Solids interface and Electromagnetic Heating multiphysics coupling for the resistive heating
 - Enables more quickly and easily locating and resolving any errors that may have been made in the definition of the physics phenomena involved before computing the full multiphysics model
- Important information for setting up the model can be found in the Model Specifications slide
 - Refer to this when building the model



Model Overview

- A voltage difference is applied between titanium bolts at opposite ends of a copper busbar
 - This is an unwanted mode of operation of the busbar and its effect is assessed
- The voltage difference induces a current flow, causing the temperature of the busbar to rise
 - An instance of the Joule heating effect
- The busbar is cooled via natural, or free, convection
 - Modeled using a Heat Flux boundary condition
- Results include the electric potential and temperature distribution
 - Plot of the current density of the busbar assembly is manually generated

Model Specifications

Manual with Predefined Couplings Approach

Define the physics for the model using predefined multiphysics couplings

Procedure:

- 1. Add the physics interface
- 2. Define the physics settings
- 3. Add multiphysics couplings
 - Only applicable when multiple physics interfaces have been added
- 4. Compute the study
- 5. Check the results
- 6. Repeat steps 1–4 for each subsequent combination of physics

The model tree for the busbar tutorial model when the manual approach with predefined couplings has been used

Model Builder ↓ 🐷 📑 🗐 🔻 Untitled.mph (root) Global Definitions Component 1 (comp1) Definitions Geometry 1 Materials ▶ ₹ Electric Currents (ec) Heat Transfer in Solids (ht) Multiphysics Electromagnetic Heating 1 (emh1) A Mesh 1 Study 1 - Electrical Analysis Results Datasets Views 8.85 Derived Values Tables ▲ I Electrical Electric Potential (ec) ▲ I Electrical-Thermal Electric Potential (ec) 1 Temperature (ht) Isothermal Contours (ht) Current Density Trogx3 Reports

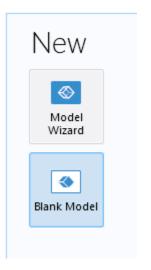
Modeling Workflow

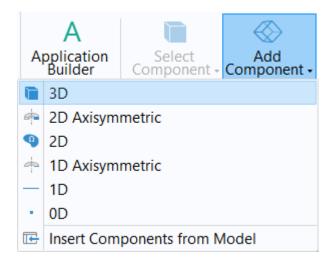
A general outline of the steps that can be used to set up, build, and compute this model to complete this modeling exercise is provided here:

Electrical Analysis

- 1. Set up the model
 - Add 3D model component
- 2. Import geometry
- 3. Assign materials
- 4. Define the physics
 - Add Electric Currents interface
- 5. Build the mesh
- 6. Run the study
 - Add Stationary study
- 7. Check the results

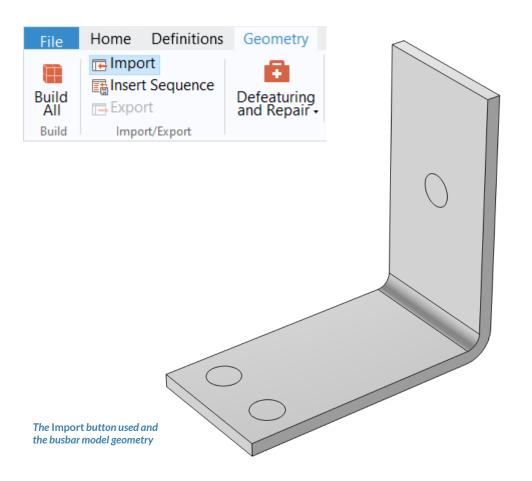
Electrical-Thermal Analysis


- 1. Define the physics
 - Add Heat Transfer in Solids interface
 - Add Electromagnetic Heating multiphysics coupling
- 2. Run the study
 - Add Stationary study
- 3. Check the results

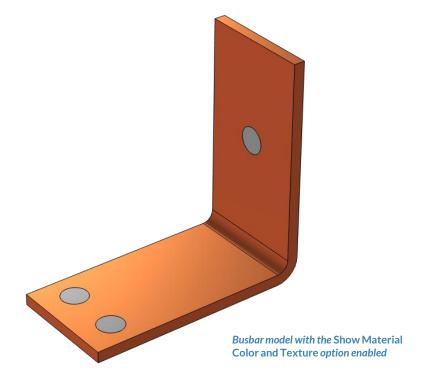

^{* =} Build the model using the procedure here and refer to the model specifications for values

Model Setup

- Open the software
- Choose a Blank Model
- Add a 3D model component

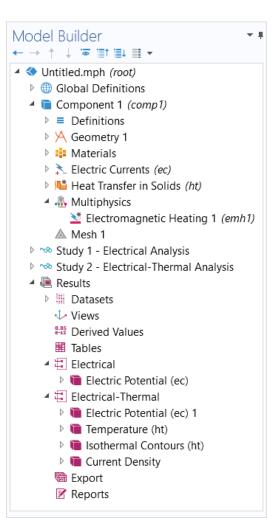

Screenshots of the steps performed to set up the model

Import Geometry


- Download the geometry file busbar.mphbin
- Import the geometry
- Build Form Union operation to finalize the geometry

Assign Materials

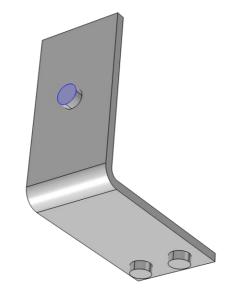
- Busbar
 - Apply Copper
- Bolts
 - Apply Titanium beta-21S

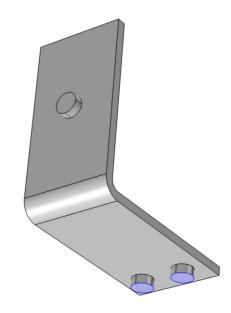

Manual with Predefined Couplings Approach

Perform two stationary studies, the first for the electric currents only and the second including heat transfer.

Procedure:

- 1. Electrical analysis
 - Add and define settings for the *Electric* Currents interface
- 2. Electrical-thermal analysis
 - Add and define settings for the Heat Transfer in Solids interface
 - Add the Electromagnetic Heating multiphysics coupling

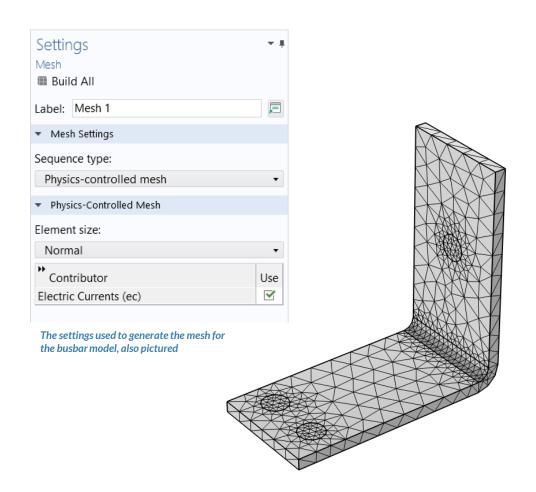

The model tree for the busbar tutorial model when the manual approach with predefined couplings has been used



PHYSICS SETTINGS

Electric Currents

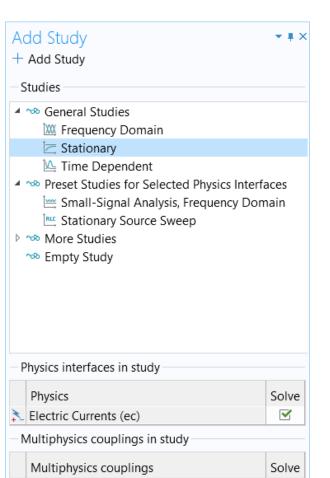
- Active in all domains
- Add Electric Potential boundary condition*
 - Defines an electric potential on the surface
- Add Ground boundary condition
 - Defines zero potential on the surface

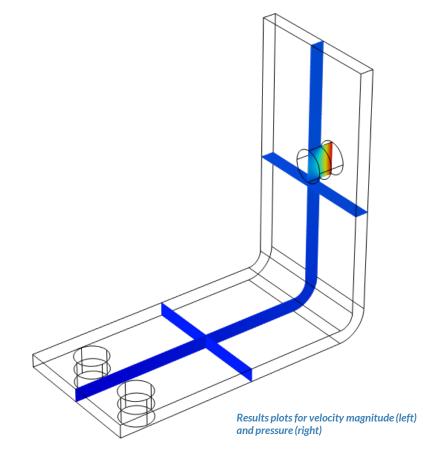


Geometry selection for the Electric Potential (left) and Ground (right) boundary conditions

^{* =} Refer to model specifications for values

Build the Mesh


Build the mesh using the default settings


Run the Study: Electrical

- Add a Stationary study
 - Study 1
- Change label for Study 1 node to Electrical Analysis
- Compute the model

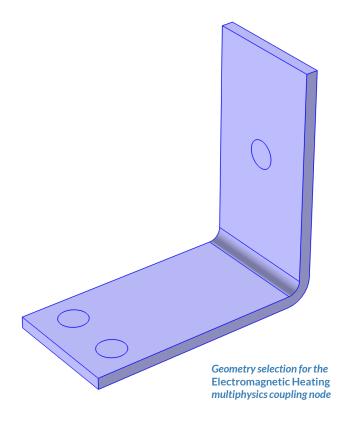
Postprocess Results: Electrical

- Default plots generated by the software
 - Electric potential

PHYSICS SETTINGS

Heat Transfer in Solids

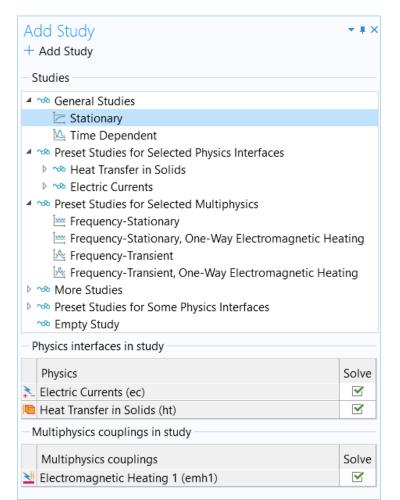
- Active in all domains
- Add Heat Flux boundary condition*
 - Convective heat flux
 - Defines heat transfer from the device to the surrounding air, naturally occurring


Geometry selection for the Heat Flux boundary condition

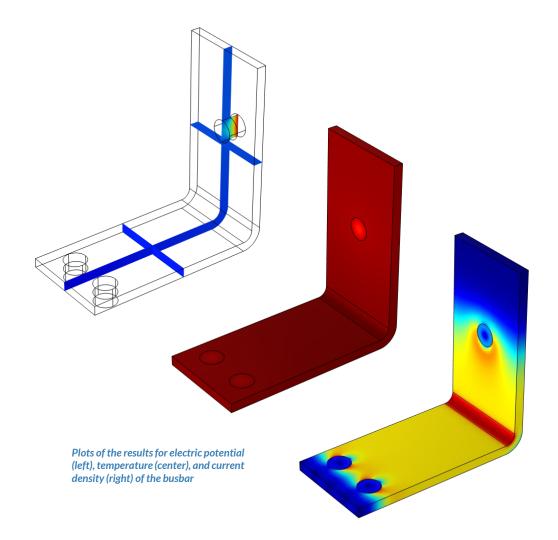
^{* =} Refer to model specifications for values

MULTIPHYSICS SETTINGS

Electromagnetic Heating


- Active in all domains
- Couples the Electric Currents and Heat Transfer in Solids physics interfaces
 - Electric Currents
 - Computes losses from passing electric current through the busbar
 - Heat Transfer in Solids
 - Incorporates resistive losses as a source of heat

Run the Study: Electrical-Thermal


- Add a Stationary study
 - Study 2
- Change label for Study 2 node to Electrical-Thermal Analysis
- Compute the model

The Add Study window, wherein the Stationary study is selected to be added to the model

Postprocess Results: Electrical-Thermal

- Default plots generated by the software
 - Electric potential
 - Temperature
- Create plot for the current density
 - Add a 3D Plot Group, rename it Current Density
 - Add a Surface plot
 - Use an expression that represents the current density norm, ec.normJ
 - Use a Manual Color Range
 - Minimum = 0
 - *Maximum* = 1e6

