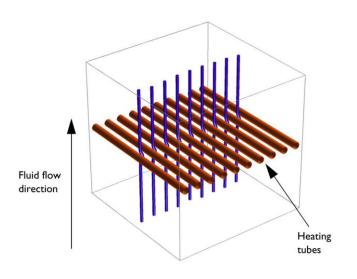
SOLUTION

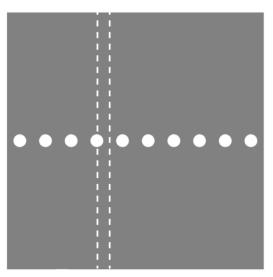
Modeling Exercise

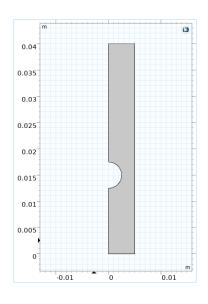
Define the physics for a model of heat transfer by free convection using the manual approach with predefined couplings

Introduction

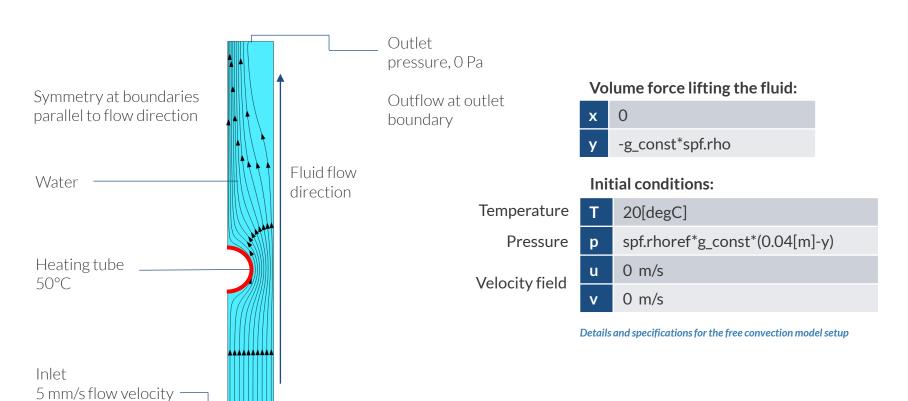
- This model exercise demonstrates the concept of multiphysics modeling in COMSOL Multiphysics[®]
- Define the physics for the model using the manual approach with predefined couplings
 - Run a single-physics simulation for the Laminar Flow (spf) interface, followed by a multiphysics simulation including the Heat Transfer in Fluids interface and Nonisothermal Flow multiphysics coupling for the nonisothermal flow
 - Enables more quickly and easily locating and resolving any errors that may have been made in the definition of the physics phenomena involved before computing the full multiphysics model
- Important information for setting up the model can be found in the model specifications
 - Refer to this when building the model




Model Overview

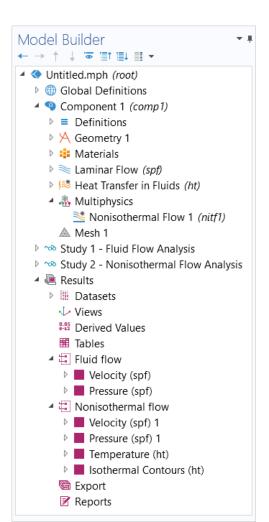

- An array of heating tubes are submerged in a vessel of water with the fluid entering from the bottom
 - The model is reduced from 3D to 2D and further simplified by exploiting symmetry due to the array
- As fluid enters the vessel and travels past the heating element, heat is transferred through convection
 - An instance of nonisothermal flow
- The buoyancy force lifting the fluid is incorporated through a force term that depends on the temperature through the density
 - Modeled through a Volume Force domain feature
- Results include the velocity field, pressure distribution, and temperature distribution

Model Overview



A cross section (center) of the 3D model geometry (left) is taken, and symmetry of the array is exploited to result in the model geometry (right)

Model Specifications


Manual with Predefined Couplings Approach

Define the physics for the model using predefined multiphysics couplings

Procedure:

- 1. Add the physics interface
- 2. Define the physics settings
- 3. Add multiphysics couplings
 - Only applicable when multiple physics interfaces have been added
- 4. Compute the study
- 5. Check the results
- 6. Repeat steps 1–4 for each subsequent combination of physics

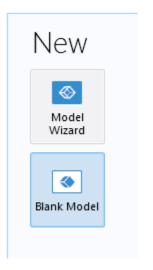
The model tree for the free convection tutorial model when the manual approach with predefined couplings has been used

Modeling Workflow

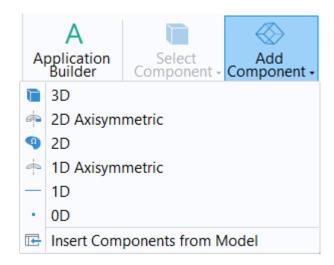
A general outline of the steps that can be used to set up, build, and compute this model to complete this modeling exercise is provided here:

Fluid Flow Analysis

- 1. Set up the model
 - Add 2D model component
- 2. Import geometry
- 3. Assign materials
- 4. Define the physics
 - Add Laminar Flow (spf) interface
- 5. Build the mesh
- 6. Run the study
 - Add Stationary study
- 7. Check the results

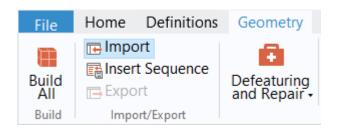

Nonisothermal Flow Analysis

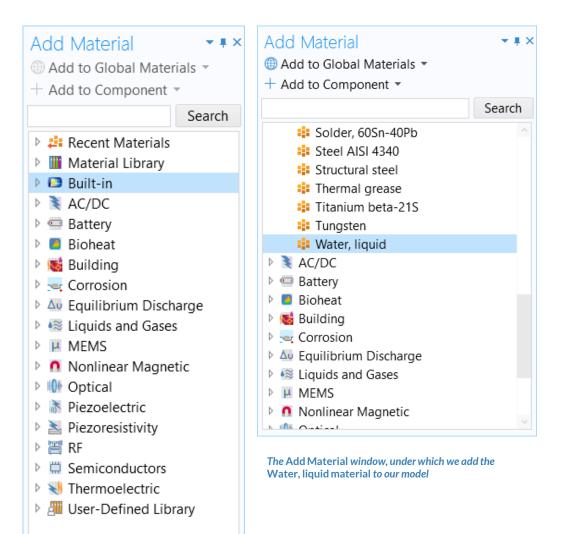
- 1. Define the physics
 - Add Heat Transfer in Fluids interface
 - Add Nonisothermal Flow multiphysics coupling
- 2. Run the study
 - Add Stationary study
- 3. Check the results



Model Setup

- Open the software
- Choose a Blank Model
- Add a 2D model component

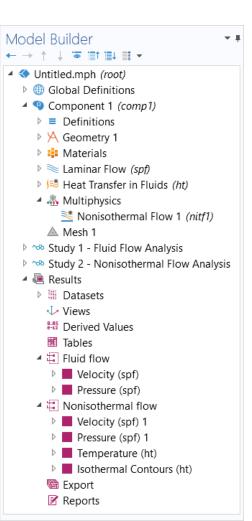

Screenshots of the steps performed to set up the model


Import Geometry

- Download the geometry file free_convection.mphbin
- Import the geometry
- Build Form Union operation to finalize the geometry

Assign Materials

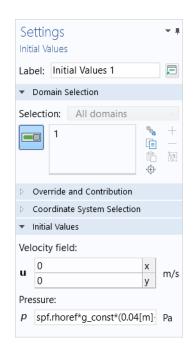
- Fluid domain
 - Apply Water, liquid

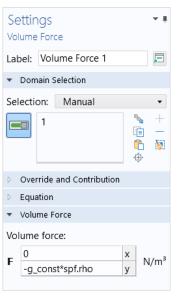

Manual with Predefined Couplings Approach

Perform two stationary studies, the first for the fluid flow and the second including heat transfer with fluid flow.

Procedure:

- 1. Fluid flow analysis
 - Add and define settings for the Laminar Flow (spf) interface
- 2. Nonisothermal flow analysis
 - Add and define settings for the Heat
 Transfer in Fluids interface
 - Add the Nonisothermal Flow multiphysics coupling

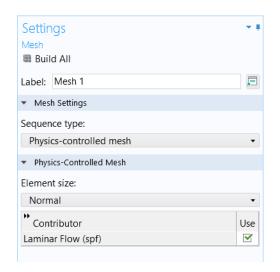

The model tree for the free convection tutorial model when the manual approach with predefined couplings has been used



PHYSICS SETTINGS

Laminar Flow

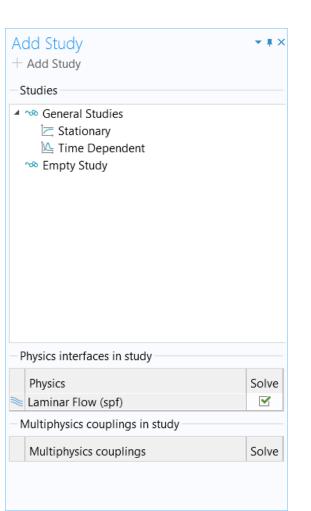
- Active in all domains
- Update Initial Values node*
 - Defines initial conditions
- Add Symmetry boundary condition
 - Defines symmetry boundaries
- Add Inlet boundary condition*
 - Defines where fluid flows into domain
- Add Outlet boundary condition
 - Defines where fluid flows out of domain
- Add Volume Force node*
 - Defines buoyancy force lifting the fluid



Settings for the Initial Values and Volume Force nodes and their geometry selection

Build the Mesh

Build the mesh using the default settings



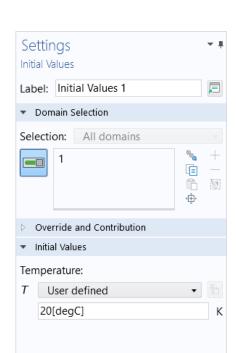
The setting used to generate the mesh for the free convection model, also pictured

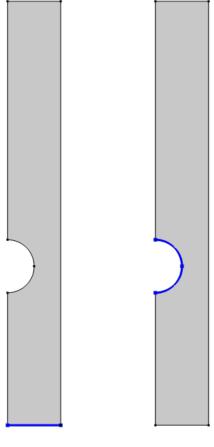
Run the Study: Fluid flow

- Add a Stationary study
 - Study 1
- Change label for Study 1 node to Fluid Flow Analysis
- Compute the model

Postprocess Results: Fluid Flow

- Default plots generated by the software
 - Velocity
 - Pressure


Results plots for velocity magnitude (left) and pressure (right)



PHYSICS SETTINGS

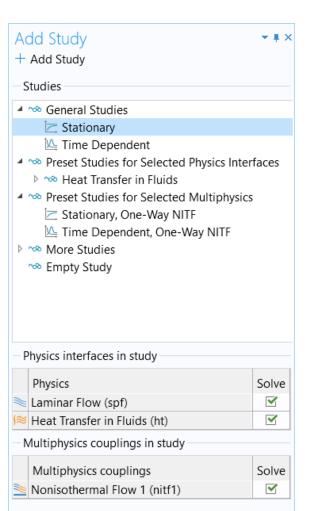
Heat Transfer in Fluids

- Active in all domains
- Update Initial Values node*
 - Defines initial conditions
- Add Temperature boundary condition*
 - Defines temperature at inlet
- Add Temperature boundary condition*
 - Defines temperature of heater
- Add Outflow boundary condition
 - Defines outlet boundary
- Add Symmetry boundary condition
 - Defines symmetry boundaries

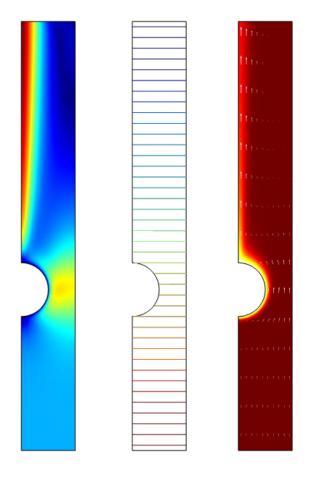
Settings for the initial values (left) and the geometry selections for the inlet (center) and heater (right)

MULTIPHYSICS SETTINGS

Nonisothermal Flow


- Active in all domains
- Couples the Laminar Flow (spf) and Heat Transfer in Fluids interfaces
 - Laminar Flow (spf)
 - Incorporates the temperature field computed in the heat transfer interface
 - Heat Transfer in Fluids
 - Incorporates the pressure and velocity fields computed in the fluid flow interface

Geometry selection for the Nonisothermal Flow multiphysics coupling node


Run the Study: Nonisothermal Flow

- Add a Stationary study
 - Study 2
- Change label for Study 2 to Nonisothermal Flow Analysis
- Compute the model

Postprocess Results: Nonisothermal Flow

- Default plots generated by the software
 - Velocity
 - Pressure
 - Temperature
- Add arrows to Temperature plot to visualize the velocity field
 - Add an Arrow Surface plot
 - Use expression that represents the velocity field
 - x component: u
 - y component: v
 - Change the arrow color to White
 - Change number of x grid points to 10

Results plots for velocity magnitude (left), pressure (center), and temperature (right)