在包装床反应堆中连续精炼铜的降低阶段的建模

F. Mansilla [1],L。Voisin [2]
[1]智利圣地亚哥智利大学高级采矿技术中心
[2]智利圣地亚哥智利大学高级采矿技术中心采矿工程系
出版于2012

在整个历史上,铜上铝过程主要是在不连续或批处理系统中进行的。近几十年来,新的连续技术已经开发出来,但仅着眼于冶炼和转换阶段,将精炼阶段抛在一边。2002年,智利大学矿业工程系提出了一项新技术,该技术由两个圆柱形填充床炉组成,用于治疗熔融泡沫铜的转化,分别含有约0.01和0.5质量%的溶解硫和氧气。第一个装有耐火床的炉子具有将硫卸下的功能,直到使用反流动的气流降低了0.0025质量%AS SO2,而第二个炉子,含有煤或可乐床,将氧气减少到0.15质量%左右。作为CO,CO2和H2O(G)。拟议的技术既有投资和运营成本低于传统旋转式炉子的投资成本。此外,它的特征是增加了精炼和减少逃亡燃烧气体排放量的动力学。图1代表了新技术的还原阶段的示意图。本工作的目的是在还原阶段在实验室规模上对该技术进行建模,以便为实际的试验工业工厂获得设计和操作最佳缩放参数。该建模允许研究反应堆内部还原阶段的氧气浓度和铜流量的曲线,这代表了实际的飞行员 - 工业炉的最佳填充床条件以及未来工业炉设计的必要信息。 Figure 2 shows the experimental array at laboratory scale. The modeling considers a random mono-sized spherical graphite packed bed in a cylindrical container with a stationary gravitational flow of oxidized copper. The system considers a first order kinetic law regarding to oxygen concentration. Figure 3 shows the 3D packed bed geometry, it was created by using a soft spherical algorithm in MATLAB® and then exported to COMSOL Multiphysics for its simulation. Four experimental parameters were investigated; the initial oxygen concentration in copper, the packed bed height, the furnace outlet diameter and, the diameter of spheres. Figure 4 shows some results of the CFD simulation, they correspond to the copper flow lines (left) and the profile of oxygen concentration (right). The modeling results were corroborated through experimental tests at 1473 K in a laboratory scale electric furnace, feeding it with industrial molten oxidized copper. The obtained refined copper from each experiment was analyzed by Inductively Couple Plasma, ICP, and the information was fed back to the CFD model for its optimization. The model will be scaled and used to run new computer simulations in order to predict optimum design and operational parameters for the actual pilot-industrial plant.