腐蚀模块你pdates

对于腐蚀模块的用户,comsol多物理学®版本5.3包括一个新的Current Distribution, Shells界面,一个新的Current Distribution, Boundary Elementsinterface, and a new physics interface for modeling chemical species transport in fractures. Learn more about these and more Corrosion Module updates here.

Current Distribution, Boundary Elements界面

Current Distribution, Boundary Elementsinterface can be used for solving primary and secondary current distribution problems on geometries based on edge (beam or wire) and surface elements. The interface uses a boundary element method (BEM) formulation to solve for the charge transfer equation in an electrolyte of constant conductivity, where the electrodes are specified on boundaries or as tubes with a given radius around the edges. You typically use this interface in order to reduce the meshing and solver time for large geometries, where a significant part of the geometry can be approximated as tubes along edges.

带有绝缘船体的船的石油钻机模型。

船固定在靠近石油平台的地方。船体受阴极腐蚀系统的电场进行。左侧的图显示了一个绝缘的船体,例如由厚涂料隔热。

船固定在靠近石油平台的地方。船体受阴极腐蚀系统的电场进行。左侧的图显示了一个绝缘的船体,例如由厚涂料隔热。
An oil rig model with a boat that has a hull partly made of bare steel. 船固定在靠近石油平台的地方。船体受阴极腐蚀系统的电场进行。这figure here shows a ship where parts are of the hull are bare steel, where the hull may work as a bipolar electrode. Here, the stem works as an anode while the stern works as a cathode. The oil rig structure close to the ship is cathodically polarized. A fraction of the impressed current goes from the sacrificial anodes (rods) through seawater, into the ship hull, out of the ship hull, through seawater and then into the oil rig structure. 船固定在靠近石油平台的地方。船体受阴极腐蚀系统的电场进行。这figure here shows a ship where parts are of the hull are bare steel, where the hull may work as a bipolar electrode. Here, the stem works as an anode while the stern works as a cathode. The oil rig structure close to the ship is cathodically polarized. A fraction of the impressed current goes from the sacrificial anodes (rods) through seawater, into the ship hull, out of the ship hull, through seawater and then into the oil rig structure.

Current Distribution, Shell界面

Current Distribution, Shell界面模拟沿边界的切向方向的离子电流传导。物理界面适合对薄电解质进行建模,其中正常方向上的潜在变化可以忽略不计,例如在大气腐蚀问题中。在这里,可能会在金属表面上形成非常薄的电解质膜。该界面允许您考虑离子电流,而无需在3D中隔离该液体层。

使用当前分布的Shell接口创建的模型。

潜在分布。

潜在分布。

离子交换膜内部边界条件Tertiary Current Distribution, Nernst-Planck界面

新的离子交换膜边界节点指定了一个边界条件,即离子通量是连续的,但是电解质电势是不连续的,并且由Donnan平衡描述。这种情况通常用于含有游离电解质和离子交换膜的电化学细胞中,例如在透析问题中。从界面的每一侧的电荷载体离子的浓度自动计算界面上的Donnan电位移位。

电解质氧化还原流量电池的电解质潜在图。

脱氧氧化还原流量电池中的电解质电势显示在游离电解质和离子交换膜之间的接口处的电势偏移。

脱氧氧化还原流量电池中的电解质电势显示在游离电解质和离子交换膜之间的接口处的电势偏移。

Application Library path for the updated Vanadium Redox Flow Battery model:
Batteries_&_Fuel_Cells_Module/Flow_Batteries/v_flow_battery

新的电荷保护模型Tertiary Current Distribution, Nernst-Planck界面

Tertiary Current Distribution, Nernst-Planck现在,界面支持四种不同的电荷保护模型:电压,带有电击的水基,支撑电解质和泊松。

薄电极层功能

Thin Electrode Layerfeature can be used to model a thin insulating or resistive sheet, located on an internal boundary in an electrode domain. The functionality can be used as an alternative to drawing the actual layer domain in the model geometry, which significantly reduces meshing and solution time, especially in 3D models. A thin electrode layer can be used to model, for instance, a contact impedance between two electronic conductors. The layer may be set to be either insulating or resistive.

薄电解质层

薄电解质层feature specifies a thin electrolyte layer on an internal boundary between two electrolyte domains. The node can be used as an alternative to drawing the actual layer as a domain in the model geometry in order to significantly reduce meshing and solution time. The condition may be set to either insulating, resistive, or ion-exchange membrane. This feature replaces the薄绝缘层feature in earlier versions.

电路终端条件

您可以使用电路端子边界上的功能以指定耦合到外部I与你节点在电路AC/DC模块的接口。这电路端子现在,条件也可以作为边界条件在Electrode Surface节点和作为操作模式单粒子电池界面。这使您可以在电路模拟中包括高保真电池模型。

New骨折中稀释的物种的运输界面

与其长度和宽度尺寸相比,裂缝的厚度非常小。由于大小尺寸的较大差异所带来的宽高比,通常必须通过必须隔离裂缝表面的厚度,而不得不通过隔离裂缝表面的厚度来建模化学物种在这种裂缝中的运输。新的骨折中稀释的物种的运输界面将裂缝视为壳,其中仅将横向尺寸啮合为表面网格。

该界面使您可以定义平均断裂厚度,以及在裂缝被认为是多孔结构的情况下的孔隙率。对于化学物种的运输,该界面允许定义有效的扩散率模型包括孔隙率的影响。对流运输可以耦合到薄膜流接口或通过包含您自己的方程式来定义流体流过裂缝的流动。另外,可以将化学反应定义为在裂缝,表面或包含裂缝的多孔培养基中发生。

An example illustrating the transport of diluted species along a somewhat curved fracture surface. 沿略微弯曲的裂缝表面运输稀释的物种。弯曲的表面由一条穿过流动和化学物质传输的表面的曲折路径组成。 沿略微弯曲的裂缝表面运输稀释的物种。弯曲的表面由一条穿过流动和化学物质传输的表面的曲折路径组成。

断裂表面在多孔介质中运输稀释的物种界面

如果运输发生在破裂的多孔3D结构中,则断裂边界条件使您可以在薄断裂中建模运输,而不必将其隔离为3D实体。这断裂边界条件包括在多孔介质中运输稀释的物种接口(请参阅图像),并具有与骨折中稀释的物种的运输interface (described above). Fluid flow and chemical species transport are seamlessly coupled between a 3D porous media structure and fluid flow and chemical species transport in a fracture.

这image below shows the concentration field in a porous reactor model. In the model, a twisted fracture "leaks" reactants deeper into the porous catalyst, from left to right, at a faster rate than the transport through the porous media. This is because the fracture surface has a much higher average porosity compared to the surrounding porous catalyst, which gives a higher mass transport rate.

骨折界面设置中稀释物种运输的屏幕截图。 Concentration contours through the 3D reactor and surface concentration in the fracture surface. The higher mass transport rate in the fracture surface gives a larger penetration (from right to left) of unreacted species into the catalyst bed. We can see that the change in concentration from right to left is very small in the fracture surface (from 0.63 to 0.62 mol/m3). Concentration contours through the 3D reactor and surface concentration in the fracture surface. The higher mass transport rate in the fracture surface gives a larger penetration (from right to left) of unreacted species into the catalyst bed. We can see that the change in concentration from right to left is very small in the fracture surface (from 0.63 to 0.62 mol/m3).

New电泳运输界面

新的电泳运输interface can be used to investigate the transport of weak acids, bases, and ampholytes in aqueous solvents. The physics interface is typically used to model various electrophoresis modes, such as zone electrophoresis, isothachophoresis, isoelectric focusing, and moving boundary electrophoresis, but is applicable to any aqueous system involving multiple acid-base equilibria.

Zone electrophoresis separating a mixed sample of two proteins into two well-resolved concentration peaks.